Analysis of Cylindrical Granular Material Silos under Seismic Excitation

نویسندگان

  • Christoph Butenweg
  • Julia Rosin
  • Stefan Holler
چکیده

Silos generally work as storage structures between supply and demand for various goods, and their structural safety has long been of interest to the civil engineering profession. This is especially true for dynamically loaded silos, e.g., in case of seismic excitation. Particularly thin-walled cylindrical silos are highly vulnerable to seismic induced pressures, which can cause critical buckling phenomena of the silo shell. The analysis of silos can be carried out in two different ways. In the first, the seismic loading is modeled through statically equivalent loads acting on the shell. Alternatively, a time history analysis might be carried out, in which nonlinear phenomena due to the filling as well as the interaction between the shell and the granular material are taken into account. The paper presents a comparison of these approaches. The model used for the nonlinear time history analysis considers the granular material by means of the intergranular strain approach for hypoplasticity theory. The interaction effects between the granular material and the shell is represented by contact elements. Additionally, soil–structure interaction effects are taken into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SEISMIC BEHAVIOR OF SILOS WITH DIFFERENT HEIGHT TO DIAMETER RATIOS CONSIDERING GRANULAR MATERIAL-STRUCTURE INTERACTION

Silos are structures that are used for storing different types of granular material. Dynamic behavior of silos under seismic loads is very complex. In this paper seismic behavior of steel silos with different height to diameter ratios is investigated by considering granular material-structure interaction using ABAQUS finite element package. Silo wall is modeled by shell elements and its behavio...

متن کامل

Buckling of Stiffened Thin Walled Cylindrical Shells due to Global Shear

Thin walled cylindrical shells are important components of industrial structures such as liquid storage tanks, silos, etc. Shell buckling is usually a major failure mode of thin walled shells under extreme loads such as earthquakes. Longitudinal and radial stiffeners are generally used in order to increase buckling capacity of thin walled shells. During an earthquake, cylindrical shells may exp...

متن کامل

Multilaminate Elastoplastic Model for Granular Media

A multilaminate based model capable of predicting the behavior of granular material on the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the direction of principal stress axes and induced anisotropy are included in a rational way witho...

متن کامل

Simulation of Gravity Flow of Granular Materials in Silos

The problem of determining the steady state flow of granular materials in silos under the action of gravity is considered. In the case of a Mohr-Coulomb material, the stress equations correspond to a system of hyperbolic conservation laws with source terms and nonlinear boundary conditions. A higher order Discontinuous Galerkin method is proposed and implemented for the numerical resolution of ...

متن کامل

Stochastic analysis of two adjacent structures subjected to structural pounding under earthquake excitation

Seismic pounding occurs as a result of lateral vibration and insufficient separation distance between two adjacent structures during earthquake excitation. This research aims to evaluate the stochastic behavior of adjacent structures with equal heights under earthquake-induced pounding. For this purpose, many stochastic analyses through comprehensive numerical simulations are carried out. About...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017